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1 Introduction

The evaluation of polynomials is at the heart of many areas of mathe-
matics. The Ore extension rings (or skew polynomial rings) are one of the
most engaging notions of polynomials in noncommutative algebra. The first
appearance of Ore extension K|[t;o,d] dates back to Ore (cf. [14]) in 1933.
Numerous authors studied skew polynomials and their evaluations in partic-

ular when the coefficient ring is a division ring or a prime ring (cf. e.g. [I1]).
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Ore extensions have been used in ring theory as a source of examples (cf.
e.g. [7], [T11]) they also give useful tools in quantum groups [5]. Furthermore,
they appeared more recently in coding theory (cf. e.g. [1], [2], [3]).

This paper is concerned with a construction of a noncommutative polyno-
mial ring, denoted S = A[t; 0, 8], that is essentially due to U. Martinez-Penas
and F. R. Kschischang (cf. [13]). The n variables t1,ts, ... t, are free vari-
ables and this extension S has a different behavior than the "usual” iterated
Ore extension (cf. [I0]). We slightly extend the context by considering a
general ring A for the coefficients of the polynomials.

In Section 2, some basic properties and examples are given. We introduce
the PMT. These maps are our main tool. The use of PMT allows a study
of both the left S-modules and their morphisms. This generalizes previous
works that appear in case of one variable (cf. [LI], [12]). This is given in
Proposition . The PMT’s also play a fundamental role in the evaluation
of an element f(t) € S. We give a lot of examples in and (2.5). One
of the main results in this section is a complete description of the left S =
Alt; 0, 6]-modules and their morphisms (see in particular, Proposition (2.7))).

In Section 3, we determine the center of S when the base ring is a division
ring, in Proposition . Also, we introduce the semi-invariant polynomials
and construct several examples in and . In Theorem we give,
under some hypothesis, the structure of semi-invariant polynomials.

In section 4, the evaluation of polynomials is presented. This is completely
different from the evaluation in iterated Ore extensions defined in [I0]. In
addition, we study the relations between evaluation and PMT in Proposition
. In particular, we obtain a general product formula in Proposition (|4.4])
even when the base ring is not a division ring. We define a relation ~ between
elements in A™. In Proposition and Proposition , PMT’s are used
to describe the decomposition of the set V(f) = {a € A" | f(a) = 0},f(t) €
S = Alt, 0, 4], into its ~ classes.

In the last section, we introduce (o, d)-centralizer. We give different char-
acterizations of these sets in Proposition (5.2)). To each element a € A"
we attach, in Proposition , a PMT 7T, and show that 7}, is right linear
over the (o,0)-centralizer of a . Finally, for a domain A, and an element
f € S = Alt;o,], we describe the set of roots of a polynomial V(f(t)) in

terms of the kernel of f(7,). The main result for this section is Proposition



(5.5)) that presents some structure on the set of roots of polynomial V'(f(t)).
All the rings will be associative with identity.

2 Structure of multivariate Ore extensions

In this section, we introduce our main objects and the tools that we will
use. In particular, the Pseudo Multivariate Transformations are defined and
applications of these maps are given in (cf. [13]).

Definition 2.1. Consider a ring A, n variables tq, ..., t,, o0 : A — M,(A)
a ring homomorphism, and a sequence of n additive maps 01,...,0,. We
denote by M the free monoid generated by the variables {ti,...,t,} and by
S = Alt;0,6] the set of polynomials of the form Y  _\, cmm, where oy, € A
and m € M. On this set, we define the natural addition and we introduce
a multiplication based on the concatenation in M and on the following com-
mutation rules:

V1<i<n,Vac€A, tia:ZU(a)ijtj—i—(Si(a). (1)
j=1
For editorial reasons, for a € A, we will write o;;(a) instead of o(a),,
viewing o;; as a map from A to A. The next proposition gives some key
features of this construction. We leave the proof to the reader.

Proposition 2.2. (1) The associativity of the ring S leads to the following
rule for the maps 01, ...,0,:

Va,be A, 0;(ab) = i gij(a)d;(b) + d;(a)b. (2)

In a compact form, this can be written as 6(ab) = o(a)d(b) + d(a)b. The
sequence of maps o, will be called a o-derivation.
(2) The fact that o and 0 satisfy the above properties can also be sum-

marized by asking that the map ¢ from A to the matriz ring M 1)x (n+1)(A)
defined by

gb D A— M(n+1)><(n+1)(A) with a — (UE)(I) é(a)> s

a

s a ring homomorphism.



Examples 2.3. 1. Let a = (a1,...,a,)" € A". We define
da(z) = ax — o(x)a in other words, 0, = (da;;0ay,---,0a,)" Where
da;(z) = az — 7 0y5(x)a;. One can check that d, is indeed a o-
derivation. When ¢ = ¢,, we can erase the derivation in the sense that,
Alt;0,0,] = Alt — a; 0.

2. Similarly if there exist U € Gl,(A) and 7, ..., 7, automorphisms of
the ring A, such that, for every x € A, we have

o(x) = U(diag(ty(x),...7(z)))U

then, noting 7 = diag(ri,...,7,) and y = U~'t, we get, for any
z €A yr=Ute = U No(@)t+6(z) = Ulo(x)t + U 'd(z) =
Ulo(z)UU't + U '9(z) = 7(x)y + U"'4(x). One can check that
U~'4(z) is a T-derivation, so that we can write

Alt;o,8] = Aly; 7, U4

3. Assume that A = K is a division ring finite-dimensional over its center
k and that o(a) = diag(a,...,a) € M,(K) for any a € k, then by
a direct application of the Skolem Noether theorem (cf. Cohn, P. M.
Book [8], p. 262) we obtain that there exists an invertible matrix
U € Gl,,(K) such that o(a) = Udiag(a,...,a)U™! for every a € K. In
particular, using the previous item we get that

Klt,0,0] = K[y; 1d.,U ]
where y = U~'t.

4. If o is diagonal, in other words if o = diag(oy,...,0,) then, for any
1 < i < n, the commutation rules are t;a = o;(a)t; + 6;(a), where J;
is a o;-derivation. In this case, the Ore extension A[t; o, d] contains all

the one variable Ore extensions Alt;; 0y, d;].

5. Let A be aring, a, 8 € End(A), and v be an («a, 3)-derivation (i.e. v €
End(A,+) and, for any a,b € A we have vy(ab) = a(a)y(b) +~(a)B(b)).
We can check that the map

, _ afa) ~(a)
0.A—>M2(A).al—><0 ﬁ(a))
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is a homomorphism of rings. If z € A we can define an («, 3)-derivation
v via y(a) = zf(a) — a(a)z. Such an (o, §)-derivation is called inner.
For more information on («, /3)-derivations the reader may consult [4].

The map o above gives rise to the extension A[(ty,2)"; o]

6. Let us notice that in the case of an upper triangular o of the form

We get that 6 : A — A is an a-derivation and we can consider both
t

R = Alt;a, 6] and S = A[t; o] where t = tl . Let us remark that the
2

map ¢ : S — R defined by ¢(t1) = t, ¢(t2) = 1 and p(a) = a for all

a € A is a ring homomorphism between S and R.

7. We can generalize the points (5) and (6) above as follows. Let A be a
ring, « : A — M, (A), and 5 : A — M;(A) be morphisms of rings.
A map v: A — M, (A) is an (a, B)-derivation if + is additive and
satisfies y(ab) = a(a)vy(b) + v(a)5(b). As above, this leads to

, _ afa) ~(a)
0:A— My(A): a— ( 0 ﬁ(a))

and we get a multivariable extension with n+[ variables A[(t1, ..., tn41)%; 0.
As a special case, we can consider an inner («, §)-derivation via a ma-
trix @ € M« (A) and define, for a € A, y(a) = zf(a) — a(a)z. We

leave to the reader the analogue of (6).

We now introduce the important notion of PMT. We keep our usual
notation S = A[t;0,0]. If V is a left S-module, then V is also a left A-
module and, for any 1 < ¢ < n, the action of ¢; on V must satisfy the
following equality

(tia).v = (Z oi;(a)t; + 6i(a)).v. (3)

J

This leads to the next definition.



Definition 2.4. Let V be a left A-module and Ty, ..., T, € End(V,+) be
such that, fora € A and v € V, we have

V1<i<nTav) =Y 0y(a)T;(v) + di(a)v. (4)

j=1

A sequence of maps satisfying these equations will be called a (o,9)-
pseudo-multilinear transformation ((o,0)-PMT, for short) on V.

In other words, writing T = (11, T5, ..., T,)" for a column of elements in
End(V,+), we can write the equality in (cf. equation |4]) in a compact form
as follows:

T(a.v) =o(a)T(v)+ d(a)v.

Examples 2.5. (a) One can check that the sequence § = (d1,...,0,)" is a
PMT on A.

(b) Let a = (a1, ...,a,)" be a column € A™ then the PMT on A defined as
follows T, = (T,,, ..., Ty,)" with
To(b) =Y oij(b)a; + 6,(b). (5)
j=1
We can check that we indeed get a PMT defined over A. As we will
see, this PMT is closely related to the evaluation at a.
(c) Let us remark that if we consider a = (0,...,0)" € A", then the PMT
T, is simply the map (d1,...,0,)"
As in the case of a single variable, we can associate a ring homomorphism
to each PMT. This is the purpose of the next proposition.
Proposition 2.6. Let T be a PMT defined on left S-module V. Then
(1) The following map

p: S5 = End(V,+) such that o(f(t)) = f(T),

1S a ring homomorphism.



(2) There is a 1-1 correspondence between the set of PMT’s and the set of

S-modules.

Proof. (1) The map ¢ is additive and we only need to check that it is also
multiplicative. We have, for every a € A and 1 < i < n, T;L, = ¢(t;a) =
(>, 0ij(a)t; + dia)) = 32, 0i(a)Tj + Ls,(a)-

2) I T = (T,...,T,) is a PMT on a module 4V we obtain a left S =
Alt, 0, §]-module structure on V' by defining t;.v = T;(v). On the other hand
when ¢V is a left S-module the actions of ¢1,...,t, on V give a PMT on V
as in the paragraph before the definition O

If ¢V is a left S-module such that 4V is free of dimension [ and if B is
a basis of V', the actions of ¢1,...,t, on V are completely described by n
matrices {7,...,7,} C M;(A) expressing these action on the basis. These
matrices are sufficient to describe the left S-module structure of V. Suppose
that V; and V5 are two left S = Alt; 0, §]-modules such that both 4V} and 4V5
are free with basis 51 = {e1,...,e,, } and B = {uy, ..., un,} respectively. We
denote the matrices corresponding to these actions in the respective basis by
X1, Xn € My, sp, (A) and Y1, ..., Yy, € Myysn,(A). I VL 5 V5 is a left
A-morphism, we let M € M,,xn,(A) to be the matrix representing ¢ in the
basis By and B,.

Now, suppose that S = Alt;0,d] be a multivariate Ore extension. For
i=1,2,T;, = (Tx,...,Tin)" be (0,0)-PMT defined on V; and V5, respectively.
If p € Homy(V1,V3) is an A-module homomorphism, also M € M, «n,(A),
X =(X1,...,X,) € Mp,wn,(A) and Y = (Y7,....,Y,) € M,,xn,(A) denote
matrices representing ¢, T} and T5 respectively in the appropriate basis [
and . Let V) and ¢V5 be the left R-module structures corresponding to
Ty and T5, respectively. We have the following properties:

Theorem 2.7. The following conditions are equivalent:
(i) ¢ € Homs(V1,Va);

(i1) Ty, = Top, for every 1 < i <n;



(i) XiM =3 05(M)Y; + 6;(M) for every 1 <i <mn.

Proof. Firstly, we have

(X M), Z 0is (M) Tis(wj) + 65 ( Mk )w; )
= (Z o ((Mig)js) Z(Y Jpjwp + 0 (M) w;)i

p=1

- Z ]k zs l] + 5 (Mlk)

(22520 (Xa) e (3o Majws) )i = 3252 (X )JleJ

Now (i) & (ii) p(t;.v;) = ti-p(vj) € ©(T1i(v))) = Tiz(¢(v))) & (poTi(v) =

(T2 0 ©)(vy)-

(i) (iil) M(p o Tii)u = (¢ o Tui)(v)x = (M (1) M (o)) = (XiM )i
On the other hand,

M(p o Tui)ue = M(Tai 0 0)i = > ((Tai © ) (w0) ) wi
k

= 2Bl = (T3 M)
Z > oMy D) + 5Z<Mu>wj>k
ZZ% My) D20 (1) + (M)
Z Z 2o (Miy) (V) + Zé (Myy)wy )i

= Zazs M;)(Ys)jk + 0:(My) = Zals )k + 0i( M)

_Zazs Yo + 0i(M)y = Zazs )Yi +0i(M))u.



A classical feature of one variable Ore extensions is the fact that R =
K|t;0,0] is embeddable in a division ring when K is itself a division ring.
Since R is a left principal domain, this is immediate. Although in our more
general setting S = K|[t, 0,0] is not even Noetherian, it is also embeddable
in a division ring. We will not use the following theorem and hence mention

it with a sketch of proof.

Theorem 2.8. Let K be a division ring and S = Klt,0,9]. Then S is
embeddable in a division ring.

Proof. We first show that the ring S is filtered via the length of monomials.
Moreover, this filtration satisfies the weak algorithm and hence is a fir (cf.
Section 2.4, in particular Theorem 2.4.4 and Theorem 2.4.6 in [6]). We
conclude that S is indeed embeddable in a division ring (cf. Corollary 7.5.14
in [6]). [

3 Center of S and Semi-invariant polynomials

The purpose of the next proposition is to study the center of S so, we
consider K a division ring and S = K|t, 0, ] where t = (t1,...,1,,),0 = (045)
and n > 1. then,

Proposition 3.1. The center Z(S) of S is
Z(K)gs={ae K|ab=baVbe K;o(a)=a.l,da) =0, V1<i<n}

Proof. Let P(t) =) . u,w € Z(S), where {2 is the semigroup generated
by ti,...,t,. We order {2 by the deg lex order with t; < ... <,

Let aw be the leading term of P(t) (o € K*,w € §2). Since P(t) is central
and deg lex is a term order. Vi € {1,...,n}

tiow=awt;, V1<i<n
Z (5ij(a)tjw + (SZ(CY)W = awti
J
Comparing leading terms we have

din(a)t,w=awt; V1<i<n



a o (a)t,w = awt;

From this we conclude w =1
atog(a)t,=t; V1<i<n

som(a) =0, Voe{l,..,n—1} and o,,(a) = «
Now P(t) € Z(S) = P(t) € K So, P(t) = a € Z(S) , ¥ i we have
tia = at; = Zj O'ij(Oé)tj + (52(06) = at;

a ... 0
Vi,je{l,.,n},o5(a) =0ifi#j; ola) = coi(a) = a
0 ... «
Moreover, §;(a) =0 Viand aa =aa Vae K = a € Z(K)y;. O

Definition 3.2. A nonzero polynomial p(t) € S is right semi-invariant if for
any a € K there exists an ' in K such that p(t)a = a'p(t).

Lemma 3.3. Suppose that p(t) € S is right semi-invariant. Then there
exists a homomorphism ¢ from K to K such that p(t)a = p(a)p(t).

Proof. Let us notice that for a € K, there exists a unique element a’ € K
such that p(t)a = a'p(t). Since the element a’ is unique we can define the
map ¢ : K — K such that p(a) = a/. It is easy to check that ¢ is a ring
homomorphism. O

Examples 3.4. (1) Let K be a division ring, and consider a map o =
diag(o1,09) and & = (d1,8,) = (0,0). Assume that 0! = o), then one can
check that t! + t. is a semi-invariant polynomial in S = K[t, 0, d].

(2) Let K be a division ring of characteristic 2, and consider maps o =
diag(Id, Id) and § = (d1,d2), where be two usual derivations on K are such

that 07 = 62 = 0, then ¢? + 3 is a semi-invariant polynomial in S = K[t, 7, ).

Let us remark that o' is unique. In the case when n = 1 these semi-
invariant polynomials are at the heart of the structure theory since such a
nonconstant semi-invariant polynomial exists if and only if the Ore extension
is not simple. In our general frame, the semi-invariant notion is too rigid to
give any structure result. Nevertheless in some particular cases, these poly-
nomials exist and their zeroes behave nicely. We will analyze this behavior

in the next section and now we will just construct these polynomials. In
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the case when o is diagonal, say ¢ = diag(oy,...,0,) wWe can search the
semi-invariant polynomials in the subrings K[t;, 0;,d;], where 1 < i < n.

Theorem 3.5. Let S = K|[t,0,0] be a multivariate Ore extension such that
there exists 1 < i < n with 0 = diag(oy,...,0,) where o; € Aut(K). Then
the skew polynomial S; = K|t;, 0;,0;] is contained in S. We assume that
there exists a nonconstant semi-invariant polynomial p;(t;) € S;. Then

1. For 1 <1 < n, the ring S; is not simple if and only if there exists
a monic nonconstant semi-invariant polynomial of minimal non zero
degree, say p;(t;) € S;.

2. Suppose that p;(t;) is as in (1) then all the monic semi-invariant poly-
nomials contained in S; are of the form Zé‘:o a;p;i(t;)? for some a; € K

with a; = 1.
Proof. These results are extracted from (cf. [9]). O

Examples 3.6. 1. if o = diag(o1,09,...,0,) and §; = 0 then, for any a €
A, t;a = o;(a)t;. This shows that ¢; is semi-invariant (even invariant).

2. If there exists 1 < ¢ < n such that for every 1 < j < n we have
0ij = 0;0;; (where 0,; stands for the classical Kroeneker symbol) and ¢;
is quasi algebraic (cf. [9]) then there exists a monic invariant polyno-
mial p(t;), say of degree [, such that p(&;)(z) = ol(z)p(t;) so that the

polynomial p(¢;) is semi-invariant.

3. Let a, 8,7 be as in Examples (cf. part number (5))). Suppose
that ay = —vf then one can check that t? and t3 are semi-invariant
polynomials in A[(t1,t2)", o).

4. Let us now give an example of a multivariate Ore extension S that is
simple. This will be very similar to the Weyl algebra construction. We
start with the field of rational fractions k(z) over a field k of charac-
teristic zero and define o : k(z) — My (k(z)) and &; = d9 via

(@ 0 (a6 _ (v
7)) (o p<x>> ! <52<p<x>>> (ﬂ(z))

11
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la
deglex order on the monomials in the variables t;,t5. Assume that [

We will show that S = k(m)[( ) , 0, (?)] is simple. define the usual
2

is a nonzero two-sided ideal of S and let f = f(¢1,t2) € I be nonzero
polynomial with minimal deglex order amongst nonzero elements of I.
If f € k(X) we get that f is invertible and hence I = S. So let w # 1
be the deglex leading monomial in f. An easy computation shows that
the deglex order of zw — wx is smaller than that of w. Hence the the
deglex order of fx— fx € I is smaller than that of f. This implies that
fr = xf, and hence the same is true for the leading term of f. This
implies that f € k() a contradiction.

5. Let us notice that in the previous example when the characteristic
of k is finite, the ring S will not be simple anymore. For instance
if char(k) = 2, we have that the left ideal generated by I = St? +
St3+ > e Stitaw + 3, o, tatiw is a two sided ideal of S. It is easy
to check that 67 = §2 = 0 and this implies that the elements 7 and
t3 are in the kernel of the ring homomorphism (see Proposition ([2.6))
¢ S — End(k(z),+) which is associated to the MLT defined by the
point (0,0).

4 Evaluation and (o, §)-conjugation
The evaluation of polynomials is a classical subject of study. We define
the evaluation of a polynomial f(t) € K[t,0,0] at an element a € K".

Definitions 4.1. 1. We define the evaluation of f(t) € S = Alt;0,0] at
(a1,...,a,) € A", via the representative of f(t)+1I € S/I by an element
of A, where I is the left ideal I = S(t;1—a1)+S(ta—az)+---+S(tn—an).

2. If v € U(A) we denote a® the (o,d)-conjugate of a (a column in A™)
by x defined by
a* =o(z)ar ™ +§(x)x? (6)

3. For a,b € A™ we define a ~ b if there exists a nonzero divisor x € A
such that bx = o(x)a + 0(x). We put

Afa) ={be A" [a ~ b}. (7)

12



It is important to remark that for a general ring A, the relation in (cf.
equation (7)) is not symmetric and hence doesn’t lead to an equivalence
relation.

Examples 4.2. 1. If we suppose n = 2, then evaluating t1t5 at (a1, as) we
get (t1t2)(a1, az) = oy1(az)ay + o12(az)as + 01(az). Let us now compare
with tot; evaluated at (aq,as). We also have (tot1) (a1, as) = o99(ay)as+
o91(ar)ay + d2(ay).

2. When ¢ = (04, ...,0,) is diagonal we have, for 1 <i <n and a € A,
tia = o;(a) + d;(a) and hence, the skew polynomial rings Alt;, 0y, d;]
are contained in S. We compute (t1t2)(a1,as) = o1(az)a; + 01(az) and
(tat1)(a1,az) = oo(ay)as + da(ay).

Let us remark that the evaluations that we obtain in the above examples
are very different from the evaluations that appear when considering iterated
extensions (cf. [10]).

Since S/I is a left S-module, it gives rise to a (0,9)-PMT on S/I given
by the actions of ¢; for 1 < i < n. The elements of S/I are represented by a
unique element of A so that the action of ¢; on S/I can be described by

The PMT attached to this action is T, = (T4,, Th,, - - ., 1,) where, for
r € Aand 1<i<n,wehave T, (z) =" 04(x)a; + d;(z) (cf. Examples

=1
equation number ([3)). ’

Let us recall from Proposition that the map ¢, : S = Alt,0,d] —
End(A,+) defined by ¢, (f(t1,...,tn)) = f(Th,, ..., Ts,) is a ring homomor-
phism.

The link between evaluation and PMT is given in the next Proposition.

Proposition 4.3. For f(t) € S = Alt,0,4d] and a € A™ we have

fla) = f(To)(1).

Proof. Since f(t) is a sum of monomials, it is enough to prove this formula
for a monomial. Let w = t,,t;,---t;, be such a monomial. We proceed by

induction on the length of w. If this length is one, we have w = t;, for
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some 1 < i3 < n. Since o(1) = I,, we have that T,,(1) = a;,. Hence,
ti,(a) = a;, =T, (1).

Assume that the formula is true for monomials of length [, for some [ > 1,
and consider a monomial of length [+ 1: w = w't; where w' is of length [. We
then have w(a) = (w't;)(a) = (W' (t; — a;) + w'a;)(a) and since w'(t; — a;) €
S(t;—a;) we have w(a) = (w'a;)(a). Using the induction hypothesis we obtain
w(a) = (w'a;)(Te)(1) = (go ( a;))(1) = (pa(w') 0 a(a:))(1) = w'(Te)(a;) =
W) (Ta)(1)) = 0/ (T) (1(T)(1) = (W) (T (1) = w(T,)(1). 0

The fact that the map ¢ in Proposition (2.7)) is a ring homomorphism,
then immediately leads to part (1) of the following proposition. This formula
is called the “product formula”.

Proposition 4.4. Suppose that f,g € S, a € A", and x € A.

1. We have:
(f9)(a) = f(To)(g(a))
In particular, if g(t) = x € A, then we have (f o x)(a) = f(T,)(x).

2. Assume that 0 # g(a) € U(A), then we get:

(fg)(a) = f(a”)g(a).

Proof. (1) fg(a) = fg(To)(1) = (¢(f9))(1) = (#(f)ep(9))(1) = «(f)(¢(9)(1))
f(T)(g(To)(1)) = f(T,)(g(a)), where ¢ is the map associated to the PMT
T,, as defined in Proposition ({2.6]).

(2) We put = g(a) and I = > S(t; — af). We have that, f — f(a®) €
> S(t; — af). Since (t — a®)x = o(z)(t — a), we get that fx — f(a¥)x €
> S(ti —af)x € > S(t; — a;). This shows that (fz)(a) = f(a”)x and hence

(a

(f9)(a) = [(Ta)(9(a) = [(Tu)(2) = (fz)(a) = f(a")z. O

The first equality in the previous proposition shows how the use of T},

leads to a general product formula for polynomials with coefficients in a
general base ring A. This also gives a link between the kernel of f(7,) and
the roots of f(t). In case A = K is a division ring, and f.z # 0, the fact that

f(T,)(x) = (f.x)(a) = f(a”)x shows that the kernel of f(T,) corresponds to
roots of f(t). The same is true for a domain but requires some formalism.
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Proposition 4.5. Let a,b € A™ be such that there exists a nonzero divisor
x € A with bx = o(x)a+ (x). Then

1. For anyy € A, f(Ty)(y)z = f(T,)(yz)

2. We have x € ker f(T,) if and only if f(b)

= 0. In particular, if x €
U(A), x € ker(f(T,))if and only if f(a*) = 0.

Proof. (1) Let us first compute Ty(y)r = o(y)br + 0(y)r = o(y)o(x)a +
o(y)d(x) + d(y)xr = o(yx)a + d(yx) = T,(yx). We use an induction on the
length [ of a word w = w(ty,...,t,) to prove the formula for monomials. If
I =1, w(ty,...,t,) =t; for some 1 < i < n and the desired equality is just
the i row of the formula Ty (y)z = T,(yx), that we just proved. Now assume
the formula has been proved for a word w = w(ty,...,t,) and let us show it
holds for w(ty, ..., t,)t; where 1 <i <n. We have (w(ty,...,t,)t) (1) (y)x =
w(Ty,, ..., Ty, )(Ty,(y))x. Thanks to the induction hypothesis we obtain that
w(Tyyy .o, o, ) (T, (y))x = w(Tyy, ..., Tu, ) ((Th,) (y)x). Using the formula ob-
tained for [ = 1, leads to w(Ty,, ..., T.,)(Th,) (y)x) = w(Tyy, - .., To, ) (Ty,) (yz)
and we conclude that (w(ty,...,t,)t)(Ty)(y)z = w(Ty,, ..., T, )(Ts,)(yx), as
desired. The fact that the formula is true for a polynomial is now obvious.
(2) Considering the equationin (1) withy = 1, we get f(b)x = f(T(1))z =
f(T,)(z) and the fact that x is not a zero divisor immediately gives that
x € ker f(T,) if and only if f(b) = 0. The last assertion is clear. O

We first give a consequence of Proposition (4.4 on the roots of a semi-
invariant polynomial. We write V(f) = {a € K"; f(a) = 0} C K" for the
set of roots of f € S.

Theorem 4.6. Let p(t) € S = Klt;0,6], where K is a division ring be a
semi-invariant polynomial. Then for any b € V(p) we have that A%°(b) C

V(p).

Proof. By hypothesis, for every a € K \ {0}, we have that p(t)a = ¢(a)p(t).
Hence we have (p()a)(b) = p(t)(b")a = (p(a)p))(b) = ¢(a)p(b) = 0,

the product formula. This shows that for any a € K \ {0}, we have that
p(t)(b"*) = 0, as required. O

lon
<

Proposition 4.7. Suppose that ¢ = diag(oy,...,0,) and that, for some
1 <i < n there is no polynomial q(t;) € S; = K|t;,04,6;] such that g(a) =0
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for every a € K. Then p;(t;) € S; is semi-invariant if and only if, for every
a€ K,

pi(T) = 1)1y © 07"

where n; = deg(p;(t;)) and rp,(1,)1) stands for the right multiplication by
pi(To)(1).

Proof. Using Proposition([4.4)), we have, for any x € K, p;(T,,)(z) = (pi(t;)x)(a) =
(o7 (@)pi(t))(a) = 07 (@) (e T,) (1)) = iy © o3 (). This gives the for-
mula.

Conversely, if p;(1,) = rp,r.)a) © 07" then, for every x € K, p;(15)(x)
o (2)pi(T.)(1). Thus for every 2,0 € K, (pi(t:))(a) = (o7 (2)pi(te))(a).
Hence our hypothesis shows that, for any = € K, p;(t;)x = o, (x)pi(t;

~—

(o

showing that p;(¢;) is semi-invariant.

5 Centralizers and roots

In this section we study the important role played by the centralizer,

Also, we will assume A is a (noncommutative) domain and S will stand for

S = Alt;0,9].

Definitions 5.1. Leta = (ay,...,a,)" € A", the 0,0 centralizer of a, denoted
C79(a) is the set

C7a) ={z € Alo(r)a+d(r) =ar} C A (8)

The idealizer, denoted idl(1) of a left ideal I of S = Alt, 0,d] is defined by
idi(I) ={peS|IpCI}.

One can easily check that C?¢(a) and idl(I) are in fact subrings of A
and S respectively. Moreover I C idl(I). If we assume that n = 1, one
can readily check that 7} is a right linear map over the subring given by
Co%(a) = {x € A| T,(z) = axr}. In the case when A = K is a division ring,
C?9(a) is a division ring isomorphic to Endg(S/I), where I = >". S(t; — a;).

Proposition 5.2. (1) b € C™(a) if and only if for any 1 < i < n we have
Z;'l:1 oi5(b)a; + 6;(b) — ab = 0.

(2) If I =3 S(t; — a;), then S/I is a left S module and a right C°(a).
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(3) There is a ring isomorphism between C°°(a) and Ends(S/I), where
S=A[t;0,0] and I =37 | S(t; — a;). If the base ring A is a division

ring these rings are in fact division rings.
(4) We have isomorphisms of rings
C?°(a) = Endg(S/T) = idl(I)/1.

Proof. (1) This is a direct consequence of the definition (cf. equation ().

(2) The fact that S/I is a right C?°(a)-module is clear since for any
1 <i<mnandanybe C7(a), we have (t;—a;)b = tib—a;b = 377 03;(b)t;+
0i(b) —aib =37, 0i5(b)(t; — aj) + >_7_, 0uj(b)a; + 0;(b) — a;b. Hence, by (1)
we get (t; —a;)b=>_"_ 0i;(b)a; € I.

(3) For b € C%(a), we define a map (b) : S/I — S/I by w(b)(f(t)+1) =
f(&)b+ I. This map is well defined since, for any 1 <i < n and any s € 5,
we have (in /1) ¥(b)(s(t; —a;)) = s(ti—ai)b = s(3_j_, 0;(b)(t; — a;), where
the last equality is obtained as in (2) above. The map 1 (b) is easily seen
to be left S-linear. The fact that ¢ is an isomorphism of rings is easy to
check. In case A is a division ring, one can check that if b € C%%(a) then
b1 e C7(a).

(4) The first isomorphism is given in (3) and the second is easy and well-

known. O

Remark 5.3. There is a more general point of view: Having a left S module.
We put C' = Endg(V). We then obtain a (S,C') bimodule structure on V.
If we fix a € A", and consider V' = S/I where I = > S(t; — a;), we get a
(S,C(a)) bimodule structure on S/I. This shed some light on the fact that
T, is a C(a) is a right module map.

Proposition 5.4. Let a € A" then for any 1 < i < n, we have
T,. € End(Ac), where C = C%°(a).

Proof. We have, for x € A and y € C, T, (zy) = >_;(0ij(zy)a; + 6i(xvy)) =
> iloij(@)oij(y)a; + 0ij(2)d;(y) + di(x)y) = > (0i;(x)(04(y)a; + 0;(y)) +
di(z)y) = 32 (05 (@)ay + di(x)y) = 5, Tu, (x)y. O

For a domain A, f € S = Alt;0,6], and a € A", we define
V(f)={a€ A" | f(a) =0} and
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The next proposition will put some structure on the set of roots of a poly-
nomial f € S = Alt;0,6]. The set V(f) is naturally divided into conjugacy

classes. For any a € V(f), we consider the set
A, i={r e A| e A" with bx = o(x)a + 0(z)}

Since A is a domain we notice that if x € A, there exists a unique b € A"
such that bx = o(x)a + §(x). We will denote this unique b by a®. We put

E(f.a):={r € Au| f(a®) = 0}
We recall that A(a) ={bec A" |a~b} ={a" | x € A}.

Proposition 5.5. Let A be a domain, a € A", and f(t) € S = Alt;0,0].
Then

1. If 0 # x € A is such that bx = o(x)a + 6(x) then x € ker f(T,) if and
only if f(b) =0

2. B(f,a) = ker f(T,) N A,
3. ker f(T,) and E(f,a) are right C°(a) modules.

4. M) V(f) = {a" | 2 € E(f,a)} = aPU).

5. Let T = {a € A" | V(f) N A(a) # 0}. Then V(f) = Uyep(a®09),

Proof. 1. The fact that « € ker f(7,) implies f(b) = 0 is given in Proposition
([.F). Conversely if f(b) = f(a*) = 0, we have 0 = f(a*)x = fz(a) =
(T @)

2. This is clear from 1; above.

3. From Proposition (5.4), it is clear that ker f(T,) is C-linear. Now let

v € A, and b € A" be such that bx = o(x)a + J(x). Let also ¢ € C7°(a),
then o(c)a + d(c) = ac and we have brc = o(z)ac + é(x)c = o(x)(o(c)a +
0(¢)) 4+ d(x)e = o(xc)a + d(xc). This shows that xc € A, and hence A, is a
right C°°(a) module. This yields the proof.

4. and 5. are clear. O
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