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1 Introduction

The evaluation of polynomials is at the heart of many areas of mathe-

matics. The Ore extension rings (or skew polynomial rings) are one of the

most engaging notions of polynomials in noncommutative algebra. The first

appearance of Ore extension K[t;σ, δ] dates back to Ore (cf. [14]) in 1933.

Numerous authors studied skew polynomials and their evaluations in partic-

ular when the coefficient ring is a division ring or a prime ring (cf. e.g. [11]).
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Ore extensions have been used in ring theory as a source of examples (cf.

e.g. [7], [11]) they also give useful tools in quantum groups [5]. Furthermore,

they appeared more recently in coding theory (cf. e.g. [1], [2], [3]).

This paper is concerned with a construction of a noncommutative polyno-

mial ring, denoted S = A[t;σ, δ], that is essentially due to U. Mart́ınez-Peñas

and F. R. Kschischang (cf. [13]). The n variables t1, t2, . . . , tn are free vari-

ables and this extension S has a different behavior than the ”usual” iterated

Ore extension (cf. [10]). We slightly extend the context by considering a

general ring A for the coefficients of the polynomials.

In Section 2, some basic properties and examples are given. We introduce

the PMT. These maps are our main tool. The use of PMT allows a study

of both the left S-modules and their morphisms. This generalizes previous

works that appear in case of one variable (cf. [11], [12]). This is given in

Proposition (2.6). The PMT’s also play a fundamental role in the evaluation

of an element f(t) ∈ S. We give a lot of examples in (2.3) and (2.5). One

of the main results in this section is a complete description of the left S =

A[t;σ, δ]-modules and their morphisms (see in particular, Proposition (2.7)).

In Section 3, we determine the center of S when the base ring is a division

ring, in Proposition (3.1). Also, we introduce the semi-invariant polynomials

and construct several examples in (3.4) and (3.6). In Theorem (3.5) we give,

under some hypothesis, the structure of semi-invariant polynomials.

In section 4, the evaluation of polynomials is presented. This is completely

different from the evaluation in iterated Ore extensions defined in [10]. In

addition, we study the relations between evaluation and PMT in Proposition

(4.3). In particular, we obtain a general product formula in Proposition (4.4)

even when the base ring is not a division ring. We define a relation ∼ between

elements in An. In Proposition (4.5) and Proposition (4.7), PMT’s are used

to describe the decomposition of the set V (f) = {a ∈ An | f(a) = 0},f(t) ∈
S = A[t, σ, δ], into its ∼ classes.

In the last section, we introduce (σ, δ)-centralizer. We give different char-

acterizations of these sets in Proposition (5.2). To each element a ∈ An

we attach, in Proposition (5.4), a PMT Ta and show that Ta is right linear

over the (σ, δ)-centralizer of a . Finally, for a domain A, and an element

f ∈ S = A[t;σ, δ], we describe the set of roots of a polynomial V (f(t)) in

terms of the kernel of f(Ta). The main result for this section is Proposition
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(5.5) that presents some structure on the set of roots of polynomial V (f(t)).

All the rings will be associative with identity.

2 Structure of multivariate Ore extensions

In this section, we introduce our main objects and the tools that we will

use. In particular, the Pseudo Multivariate Transformations are defined and

applications of these maps are given in (cf. [13]).

Definition 2.1. Consider a ring A, n variables t1, . . . , tn, σ : A → Mn(A)

a ring homomorphism, and a sequence of n additive maps δ1, . . . , δn. We

denote by M the free monoid generated by the variables {t1, . . . , tn} and by

S = A[t;σ, δ] the set of polynomials of the form
∑

m∈M αmm, where αm ∈ A

and m ∈ M . On this set, we define the natural addition and we introduce

a multiplication based on the concatenation in M and on the following com-

mutation rules:

∀ 1 ≤ i ≤ n, ∀ a ∈ A, tia =
n∑

j=1

σ(a)ijtj + δi(a). (1)

For editorial reasons, for a ∈ A, we will write σij(a) instead of σ(a)ij,

viewing σij as a map from A to A. The next proposition gives some key

features of this construction. We leave the proof to the reader.

Proposition 2.2. (1) The associativity of the ring S leads to the following

rule for the maps δ1, . . . , δn:

∀a, b ∈ A, δi(ab) =
n∑

j=1

σij(a)δj(b) + δi(a)b. (2)

In a compact form, this can be written as δ(ab) = σ(a)δ(b) + δ(a)b. The

sequence of maps δa will be called a σ-derivation.

(2) The fact that σ and δ satisfy the above properties can also be sum-

marized by asking that the map ϕ from A to the matrix ring M(n+1)×(n+1)(A)

defined by

ϕ : A→M(n+1)×(n+1)(A) with a 7→

(
σ(a) δ(a)

0 a

)
,

is a ring homomorphism.
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Examples 2.3. 1. Let a = (a1, . . . , an)
t ∈ An. We define

δa(x) = ax − σ(x)a in other words, δa = (δa1 , δa2 , . . . , δan)
t where

δai(x) = aix −
∑n

j=1 σij(x)aj. One can check that δa is indeed a σ-

derivation. When δ = δa, we can erase the derivation in the sense that,

A[t;σ, δa] = A[t− a;σ].

2. Similarly if there exist U ∈ Gln(A) and τ1, . . . , τn automorphisms of

the ring A, such that, for every x ∈ A, we have

σ(x) = U(diag(τ1(x), . . . τn(x)))U
−1

then, noting τ = diag(τ1, . . . , τn) and y = U−1t, we get, for any

x ∈ A, yx = U−1tx = U−1(σ(x)t + δ(x)) = U−1σ(x)t + U−1δ(x) =

U−1σ(x)UU−1t + U−1δ(x) = τ(x)y + U−1δ(x). One can check that

U−1δ(x) is a τ -derivation, so that we can write

A[t;σ, δ] = A[y; τ, U−1δ].

3. Assume that A = K is a division ring finite-dimensional over its center

k and that σ(α) = diag(α, . . . , α) ∈ Mn(K) for any α ∈ k, then by

a direct application of the Skolem Noether theorem (cf. Cohn, P. M.

Book [8], p. 262) we obtain that there exists an invertible matrix

U ∈ Gln(K) such that σ(a) = Udiag(a, . . . , a)U−1 for every a ∈ K. In

particular, using the previous item we get that

K[t, σ, δ] = K[y; Id., U−1δ]

where y = U−1t.

4. If σ is diagonal, in other words if σ = diag(σ1, . . . , σn) then, for any

1 ≤ i ≤ n, the commutation rules are tia = σi(a)ti + δi(a), where δi
is a σi-derivation. In this case, the Ore extension A[t;σ, δ] contains all

the one variable Ore extensions A[ti;σi, δi].

5. Let A be a ring, α, β ∈ End(A), and γ be an (α, β)-derivation (i.e. γ ∈
End(A,+) and, for any a, b ∈ A we have γ(ab) = α(a)γ(b)+γ(a)β(b)).

We can check that the map

σ : A −→M2(A) : a 7→

(
α(a) γ(a)

0 β(a)

)
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is a homomorphism of rings. If x ∈ A we can define an (α, β)-derivation

γ via γ(a) = xβ(a) − α(a)x. Such an (α, β)-derivation is called inner.

For more information on (α, β)-derivations the reader may consult [4].

The map σ above gives rise to the extension A[(t1, t2)
t;σ].

6. Let us notice that in the case of an upper triangular σ of the form

σ(a) =

(
α(a) δ(a)

0 a

)

We get that δ : A −→ A is an α-derivation and we can consider both

R = A[t;α, δ] and S = A[t;σ] where t =

(
t1
t2

)
. Let us remark that the

map φ : S → R defined by φ(t1) = t, φ(t2) = 1 and φ(a) = a for all

a ∈ A is a ring homomorphism between S and R.

7. We can generalize the points (5) and (6) above as follows. Let A be a

ring, α : A −→ Mn(A), and β : A −→ Ml(A) be morphisms of rings.

A map γ : A −→ Mn×l(A) is an (α, β)-derivation if γ is additive and

satisfies γ(ab) = α(a)γ(b) + γ(a)β(b). As above, this leads to

σ : A −→Mn×l(A) : a 7→

(
α(a) γ(a)

0 β(a)

)

and we get a multivariable extension with n+l variablesA[(t1, . . . , tn+l)
t;σ].

As a special case, we can consider an inner (α, β)-derivation via a ma-

trix x ∈ Mn×l(A) and define, for a ∈ A, γ(a) = xβ(a) − α(a)x. We

leave to the reader the analogue of (6).

We now introduce the important notion of PMT. We keep our usual

notation S = A[t;σ, δ]. If V is a left S-module, then V is also a left A-

module and, for any 1 ≤ i ≤ n, the action of ti on V must satisfy the

following equality

(tia).v = (
∑
j

σij(a)tj + δi(a)).v. (3)

This leads to the next definition.
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Definition 2.4. Let V be a left A-module and T1, . . . , Tn ∈ End(V,+) be

such that, for a ∈ A and v ∈ V , we have

∀ 1 ≤ i ≤ n, Ti(a.v) =
n∑

j=1

σij(a)Tj(v) + δi(a).v. (4)

A sequence of maps satisfying these equations will be called a (σ, δ)-

pseudo-multilinear transformation ((σ, δ)-PMT, for short) on V .

In other words, writing T = (T1, T2, . . . , Tn)
t for a column of elements in

End(V,+), we can write the equality in (cf. equation 4) in a compact form

as follows:

T (a.v) = σ(a)T (v) + δ(a)v.

Examples 2.5. (a) One can check that the sequence δ = (δ1, . . . , δn)
t is a

PMT on A.

(b) Let a = (a1, . . . , an)
t be a column ∈ An then the PMT on A defined as

follows Ta = (Ta1 , . . . , Tan)
t with

Tai(b) =
n∑

j=1

σij(b)aj + δi(b). (5)

We can check that we indeed get a PMT defined over A. As we will

see, this PMT is closely related to the evaluation at a.

(c) Let us remark that if we consider a = (0, . . . , 0)t ∈ An, then the PMT

Ta is simply the map (δ1, . . . , δn)
t.

As in the case of a single variable, we can associate a ring homomorphism

to each PMT. This is the purpose of the next proposition.

Proposition 2.6. Let T be a PMT defined on left S-module V . Then

(1) The following map

φ : S → End(V,+) such that φ(f(t)) = f(T ),

is a ring homomorphism.
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(2) There is a 1-1 correspondence between the set of PMT’s and the set of

S-modules.

Proof. (1) The map φ is additive and we only need to check that it is also

multiplicative. We have, for every a ∈ A and 1 ≤ i ≤ n, TiLa = φ(tia) =

φ(
∑

j σij(a)tj + δi(a)) =
∑

j σij(a)Tj + Lδi(a).

(2) If T = (T1, . . . , Tn) is a PMT on a module AV we obtain a left S =

A[t, σ, δ]-module structure on V by defining ti.v = Ti(v). On the other hand

when SV is a left S-module the actions of t1, . . . , tn on V give a PMT on V

as in the paragraph before the definition 2.4.

If SV is a left S-module such that AV is free of dimension l and if B is

a basis of V , the actions of t1, . . . , tn on V are completely described by n

matrices {τ1, . . . , τn} ⊂ Ml(A) expressing these action on the basis. These

matrices are sufficient to describe the left S-module structure of V . Suppose

that V1 and V2 are two left S = A[t;σ, δ]-modules such that both AV1 and AV2
are free with basis β1 = {e1, . . . , en1} and β2 = {u1, . . . , un2} respectively. We

denote the matrices corresponding to these actions in the respective basis by

X1, . . . , Xn ∈ Mn1×n1(A) and Y1, . . . , Yn ∈ Mn2×n2(A). If V1
φ→ V2 is a left

A-morphism, we let M ∈ Mn2×n1(A) to be the matrix representing φ in the

basis B1 and B2.

Now, suppose that S = A[t;σ, δ] be a multivariate Ore extension. For

i = 1, 2, Ti = (Ti1, . . . , Tin)
t be (σ, δ)-PMT defined on V1 and V2, respectively.

If φ ∈ HomA(V1, V2) is an A-module homomorphism, also M ∈ Mn1×n2(A),

X = (X1, . . . , Xn) ∈ Mn1×n1(A) and Y = (Y1, . . . , Yn) ∈ Mn2×n2(A) denote

matrices representing φ, T1 and T2 respectively in the appropriate basis β1
and β2. Let SV1 and SV2 be the left R-module structures corresponding to

T1 and T2, respectively. We have the following properties:

Theorem 2.7. The following conditions are equivalent:

(i) φ ∈ HomS(V1, V2);

(ii) φT1i = T2iφ, for every 1 ≤ i ≤ n;
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(iii) XiM =
∑

j σij(M)Yj + δi(M) for every 1 ≤ i ≤ n.

Proof. Firstly, we have

(XiM)l,k = (
∑
js

σis(Mjk)Tis(wj) + δi(Mjk)wj)l

= (
∑
j,s

σ((Mik)js)

n2∑
p=1

(Ys)pjwp + δi(Mjk)wj)l

=
∑
j,s

σ((Mjk)is)(Ys)lj + δi(Mlk)

=
∑
s

(
∑
j

σis(Mk)(Ys)lj) + δi(Mlk)

= ((
∑
s

σis(M)Ys) + δi(M))lk =
∑
s

(
∑
j

σis(Mlj)(Ys)jk)

Also, (φ◦Ti1)lk = (φ(Ti1(vk)))l = φ(
∑n2

j=1(Xi)jkvj)l = (
∑n2

j=1(Xi)jkφ(vj))l =

(
∑n2

j=1(Xi)jk(
∑

sMsjws))l =
∑n2

j=1(Xi)jkMlj.

Now (i) ⇔ (ii) φ(ti.vj) = ti.φ(vj) ⇔ φ(T1i(vj)) = Ti2(φ(vj)) ⇔ (φ◦T1i(vj) =
(Ti2 ◦ φ)(vj).
(ii)⇔ (iii) M(φ ◦ T1i)lk = (φ ◦ T1i)(vl)k = (M(T1i)M(φ))lk = (XiM)lk

On the other hand,

M(φ ◦ T1i)lk =M(T2i ◦ φ)lk =
∑
k

((T2i ◦ φ)(vl))k)wk

=
∑
k

(T2i(φ(vl)))kwk = (T2i(
∑
j

Mljwj))k

= (
∑
j

∑
s

σis(Mlj)T2i(wj) + δi(Mlj)wj)k

= (
∑
j

∑
s

σis(Mlj)
∑
m

((Yi))jm(wm) + δi(Mlj)wj)k

= (
∑
j

∑
s

∑
m

σis(Mlj)(Yi)jmwm +
∑
j

δi(Mlj)wj)k

=
∑
j,s

σis(Mlj)(Yi)jk + δi(Mlk) =
∑
j,s

σis(M)lj(Yi)jk + δi(Mlk)

=
∑
s

(σis(M)Yi)lk + δi(M)lk = (
∑
s

σis(M)Yi + δi(M))lk.
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A classical feature of one variable Ore extensions is the fact that R =

K[t;σ, δ] is embeddable in a division ring when K is itself a division ring.

Since R is a left principal domain, this is immediate. Although in our more

general setting S = K[t, σ, δ] is not even Noetherian, it is also embeddable

in a division ring. We will not use the following theorem and hence mention

it with a sketch of proof.

Theorem 2.8. Let K be a division ring and S = K[t, σ, δ]. Then S is

embeddable in a division ring.

Proof. We first show that the ring S is filtered via the length of monomials.

Moreover, this filtration satisfies the weak algorithm and hence is a fir (cf.

Section 2.4, in particular Theorem 2.4.4 and Theorem 2.4.6 in [6]). We

conclude that S is indeed embeddable in a division ring (cf. Corollary 7.5.14

in [6]).

3 Center of S and Semi-invariant polynomials

The purpose of the next proposition is to study the center of S so, we

consider K a division ring and S = K[t, σ, δ] where t = (t1, ..., tn), σ = (σij)

and n > 1. then,

Proposition 3.1. The center Z(S) of S is

Z(K)σ,δ = {a ∈ K | ab = ba ∀ b ∈ K;σ(a) = a.In, δi(a) = 0, ∀ 1 ≤ i ≤ n}

Proof. Let P (t) =
∑

ω∈Ω aω, ω ∈ Z(S), where Ω is the semigroup generated

by t1, ..., tn. We order Ω by the deg lex order with t1 < ... < tn
Let αω be the leading term of P (t) (α ∈ K∗, ω ∈ Ω). Since P (t) is central

and deg lex is a term order. ∀ i ∈ {1, ..., n}

tiαω = αωti, ∀ 1 ≤ i ≤ n∑
j

δij(α)tjω + δi(α)ω = αωti

Comparing leading terms we have

δin(α)tnω = αωti ∀ 1 ≤ i ≤ n
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α−1σin(α)tnω = αωti

From this we conclude ω = 1

α−1σin(α)tn = ti ∀ 1 ≤ i ≤ n

;σin(α) = 0, ∀ σ ∈ {1, ..., n− 1} and σnn(α) = α

Now P (t) ∈ Z(S) =⇒ P (t) ∈ K So, P (t) = α ∈ Z(S) , ∀ i we have

tiα = αti =⇒
∑

j σij(α)tj + δi(α) = αti

∀ i, j ∈ {1, ..., n}, σij(α) = 0 if i ̸= j ; σ(α) =

 α ... 0
. . .

0 ... α

 , σii(α) = α

Moreover, δi(α) = 0 ∀ i and αa = aα ∀ a ∈ K =⇒ α ∈ Z(K)σ,δ.

Definition 3.2. A nonzero polynomial p(t) ∈ S is right semi-invariant if for

any a ∈ K there exists an a′ in K such that p(t)a = a′p(t).

Lemma 3.3. Suppose that p(t) ∈ S is right semi-invariant. Then there

exists a homomorphism φ from K to K such that p(t)a = φ(a)p(t).

Proof. Let us notice that for a ∈ K, there exists a unique element a′ ∈ K

such that p(t)a = a′p(t). Since the element a′ is unique we can define the

map φ : K → K such that φ(a) = a′. It is easy to check that φ is a ring

homomorphism.

Examples 3.4. (1) Let K be a division ring, and consider a map σ =

diag(σ1, σ2) and δ = (δ1, δ2) = (0, 0). Assume that σl
1 = σl

2, then one can

check that tl1 + tl2 is a semi-invariant polynomial in S = K[t, σ, δ].

(2) Let K be a division ring of characteristic 2, and consider maps σ =

diag(Id, Id) and δ = (δ1, δ2), where be two usual derivations on K are such

that δ21 = δ22 = 0, then t21+ t
2
2 is a semi-invariant polynomial in S = K[t, σ, δ].

Let us remark that a′ is unique. In the case when n = 1 these semi-

invariant polynomials are at the heart of the structure theory since such a

nonconstant semi-invariant polynomial exists if and only if the Ore extension

is not simple. In our general frame, the semi-invariant notion is too rigid to

give any structure result. Nevertheless in some particular cases, these poly-

nomials exist and their zeroes behave nicely. We will analyze this behavior

in the next section and now we will just construct these polynomials. In
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the case when σ is diagonal, say σ = diag(σ1, . . . , σn) we can search the

semi-invariant polynomials in the subrings K[ti, σi, δi], where 1 ≤ i ≤ n.

Theorem 3.5. Let S = K[t, σ, δ] be a multivariate Ore extension such that

there exists 1 ≤ i ≤ n with σ = diag(σ1, . . . , σn) where σi ∈ Aut(K). Then

the skew polynomial Si = K|ti, σi, δi] is contained in S. We assume that

there exists a nonconstant semi-invariant polynomial pi(ti) ∈ Si. Then

1. For 1 ≤ i ≤ n, the ring Si is not simple if and only if there exists

a monic nonconstant semi-invariant polynomial of minimal non zero

degree, say pi(ti) ∈ Si.

2. Suppose that pi(ti) is as in (1) then all the monic semi-invariant poly-

nomials contained in Si are of the form
∑l

j=0 ajpi(ti)
j for some aj ∈ K

with al = 1.

Proof. These results are extracted from (cf. [9]).

Examples 3.6. 1. if σ = diag(σ1, σ2, . . . , σn) and δi = 0 then, for any a ∈
A, tia = σi(a)ti. This shows that ti is semi-invariant (even invariant).

2. If there exists 1 ≤ i ≤ n such that for every 1 ≤ j ≤ n we have

σij = σiδij (where δij stands for the classical Kroeneker symbol) and δi
is quasi algebraic (cf. [9]) then there exists a monic invariant polyno-

mial p(ti), say of degree l, such that p(δi)(x) = σl
i(x)p(ti) so that the

polynomial p(ti) is semi-invariant.

3. Let α, β, γ be as in Examples (cf. 2.3) part number (5)). Suppose

that αγ = −γβ then one can check that t21 and t22 are semi-invariant

polynomials in A[(t1, t2)
t, σ].

4. Let us now give an example of a multivariate Ore extension S that is

simple. This will be very similar to the Weyl algebra construction. We

start with the field of rational fractions k(x) over a field k of charac-

teristic zero and define σ : k(x) →M2(k(x)) and δ1 = δ2 via

σ(p(x)) =

(
p(x) 0

0 p(x)

)
and

(
δ1(p(x))

δ2(p(x))

)
=

(
p′(x)

p′(x)

)
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We will show that S = k(x)[

(
t1
t2

)
, σ,

(
δ1
δ2

)
] is simple. define the usual

deglex order on the monomials in the variables t1, t2. Assume that I

is a nonzero two-sided ideal of S and let f = f(t1, t2) ∈ I be nonzero

polynomial with minimal deglex order amongst nonzero elements of I.

If f ∈ k(X) we get that f is invertible and hence I = S. So let w ̸= 1

be the deglex leading monomial in f . An easy computation shows that

the deglex order of xw − wx is smaller than that of w. Hence the the

deglex order of fx−fx ∈ I is smaller than that of f . This implies that

fx = xf , and hence the same is true for the leading term of f . This

implies that f ∈ k(x) a contradiction.

5. Let us notice that in the previous example when the characteristic

of k is finite, the ring S will not be simple anymore. For instance

if char(k) = 2, we have that the left ideal generated by I = St21 +

St22 +
∑

w∈Ω St
2
1t2w +

∑
w∈ω t

2
2t1w is a two sided ideal of S. It is easy

to check that δ21 = δ22 = 0 and this implies that the elements t21 and

t22 are in the kernel of the ring homomorphism (see Proposition (2.6))

φ : S → End(k(x),+) which is associated to the MLT defined by the

point (0, 0).

4 Evaluation and (σ, δ)-conjugation

The evaluation of polynomials is a classical subject of study. We define

the evaluation of a polynomial f(t) ∈ K[t, σ, δ] at an element a ∈ Kn.

Definitions 4.1. 1. We define the evaluation of f(t) ∈ S = A[t;σ, δ] at

(a1, . . . , an) ∈ An, via the representative of f(t)+I ∈ S/I by an element

of A, where I is the left ideal I = S(t1−a1)+S(t2−a2)+· · ·+S(tn−an).

2. If x ∈ U(A) we denote ax the (σ, δ)-conjugate of a (a column in An)

by x defined by

ax = σ(x)ax−1 + δ(x)x−1 (6)

3. For a, b ∈ An we define a ∼ b if there exists a nonzero divisor x ∈ A

such that bx = σ(x)a+ δ(x). We put

∆(a) = {b ∈ An | a ∼ b}. (7)
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It is important to remark that for a general ring A, the relation in (cf.

equation (7)) is not symmetric and hence doesn’t lead to an equivalence

relation.

Examples 4.2. 1. If we suppose n = 2, then evaluating t1t2 at (a1, a2) we

get (t1t2)(a1, a2) = σ11(a2)a1 + σ12(a2)a2 + δ1(a2). Let us now compare

with t2t1 evaluated at (a1, a2). We also have (t2t1)(a1, a2) = σ22(a1)a2+

σ21(a1)a1 + δ2(a1).

2. When σ = (σ1, . . . , σn) is diagonal we have, for 1 ≤ i ≤ n and a ∈ A,

tia = σi(a) + δi(a) and hence, the skew polynomial rings A[ti, σi, δi]

are contained in S. We compute (t1t2)(a1, a2) = σ1(a2)a1 + δ1(a2) and

(t2t1)(a1, a2) = σ2(a1)a2 + δ2(a1).

Let us remark that the evaluations that we obtain in the above examples

are very different from the evaluations that appear when considering iterated

extensions (cf. [10]).

Since S/I is a left S-module, it gives rise to a (σ, δ)-PMT on S/I given

by the actions of ti for 1 ≤ i ≤ n. The elements of S/I are represented by a

unique element of A so that the action of ti on S/I can be described by

ti.(x+ I) = tix+ I =
∑

σij(x)aj + δi(x) + I.

The PMT attached to this action is Ta = (Ta1 , Ta2 , . . . , Tan) where, for

x ∈ A and 1 ≤ i ≤ n, we have Tai(x) =
∑n

j=1 σij(x)aj + δi(x) (cf. Examples

2.5 equation number (5)).

Let us recall from Proposition (2.6) that the map φa : S = A[t, σ, δ] →
End(A,+) defined by φa(f(t1, . . . , tn)) = f(Ta1 , . . . , Tan) is a ring homomor-

phism.

The link between evaluation and PMT is given in the next Proposition.

Proposition 4.3. For f(t) ∈ S = A[t, σ, δ] and a ∈ An we have

f(a) = f(Ta)(1).

Proof. Since f(t) is a sum of monomials, it is enough to prove this formula

for a monomial. Let w = ti1ti2 · · · til be such a monomial. We proceed by

induction on the length of w. If this length is one, we have w = ti1 for

13



some 1 ≤ i1 ≤ n. Since σ(1) = In, we have that Tai(1) = ai1 . Hence,

ti1(a) = ai1 = Tai(1).

Assume that the formula is true for monomials of length l, for some l ≥ 1,

and consider a monomial of length l+1: w = w′ti where w
′ is of length l. We

then have w(a) = (w′ti)(a) = (w′(ti − ai) + w′ai)(a) and since w′(ti − ai) ∈
S(ti−ai) we have w(a) = (w′ai)(a). Using the induction hypothesis we obtain

w(a) = (w′ai)(Ta)(1) = (φa(w
′ai))(1) = (φa(w

′) ◦ φa(ai))(1) = w′(Ta)(ai) =

w′(Ta)((Tai)(1)) = w′(Ta)(ti(Ta)(1)) = (w′ti)(Ta)(1) = w(Ta)(1).

The fact that the map φ in Proposition (2.7) is a ring homomorphism,

then immediately leads to part (1) of the following proposition. This formula

is called the “product formula”.

Proposition 4.4. Suppose that f, g ∈ S, a ∈ An, and x ∈ A.

1. We have:

(fg)(a) = f(Ta)(g(a))

In particular, if g(t) = x ∈ A, then we have (f ◦ x)(a) = f(Ta)(x).

2. Assume that 0 ̸= g(a) ∈ U(A), then we get:

(fg)(a) = f(ag(a))g(a).

Proof. (1) fg(a) = fg(Ta)(1) = (φ(fg))(1) = (φ(f)◦φ(g))(1) = φ(f)(φ(g)(1))

f(Ta)(g(Ta)(1)) = f(Ta)(g(a)), where φ is the map associated to the PMT

Ta, as defined in Proposition (2.6).

(2) We put x = g(a) and I =
∑
S(ti − axi ). We have that, f − f(ax) ∈∑

S(ti − axi ). Since (t − ax)x = σ(x)(t − a), we get that fx − f(ax)x ∈∑
S(ti − axi )x ∈

∑
S(ti − ai). This shows that (fx)(a) = f(ax)x and hence

(fg)(a) = f(Ta)(g(a)) = f(Ta)(x) = (fx)(a) = f(ax)x.

The first equality in the previous proposition shows how the use of Ta
leads to a general product formula for polynomials with coefficients in a

general base ring A. This also gives a link between the kernel of f(Ta) and

the roots of f(t). In case A = K is a division ring, and f.x ̸= 0, the fact that

f(Ta)(x) = (f.x)(a) = f(ax)x shows that the kernel of f(Ta) corresponds to

roots of f(t). The same is true for a domain but requires some formalism.
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Proposition 4.5. Let a, b ∈ An be such that there exists a nonzero divisor

x ∈ A with bx = σ(x)a+ δ(x). Then

1. For any y ∈ A, f(Tb)(y)x = f(Ta)(yx)

2. We have x ∈ ker f(Ta) if and only if f(b) = 0. In particular, if x ∈
U(A), x ∈ ker(f(Ta))if and only if f(ax) = 0.

Proof. (1) Let us first compute Tb(y)x = σ(y)bx + δ(y)x = σ(y)σ(x)a +

σ(y)δ(x) + δ(y)x = σ(yx)a + δ(yx) = Ta(yx). We use an induction on the

length l of a word w = w(t1, . . . , tn) to prove the formula for monomials. If

l = 1, w(t1, . . . , tn) = ti for some 1 ≤ i ≤ n and the desired equality is just

the ith row of the formula Tb(y)x = Ta(yx), that we just proved. Now assume

the formula has been proved for a word w = w(t1, . . . , tn) and let us show it

holds for w(t1, . . . , tn)ti where 1 ≤ i ≤ n. We have (w(t1, . . . , tn)ti)(Tb)(y)x =

w(Tb1 , . . . , Tbn)(Tbi(y))x. Thanks to the induction hypothesis we obtain that

w(Tb1 , . . . , Tbn)(Tbi(y))x = w(Ta1 , . . . , Tan)((Tbi)(y)x). Using the formula ob-

tained for l = 1, leads to w(Ta1 , . . . , Tan)((Tbi)(y)x) = w(Ta1 , . . . , Tan)(Tai)(yx)

and we conclude that (w(t1, . . . , tn)ti)(Tb)(y)x = w(Ta1 , . . . , Tan)(Tai)(yx), as

desired. The fact that the formula is true for a polynomial is now obvious.

(2) Considering the equation in (1) with y = 1, we get f(b)x = f(Tb(1))x =

f(Ta)(x) and the fact that x is not a zero divisor immediately gives that

x ∈ ker f(Ta) if and only if f(b) = 0. The last assertion is clear.

We first give a consequence of Proposition (4.4) on the roots of a semi-

invariant polynomial. We write V (f) = {a ∈ Kn; f(a) = 0} ⊂ Kn for the

set of roots of f ∈ S.

Theorem 4.6. Let p(t) ∈ S = K[t;σ, δ], where K is a division ring be a

semi-invariant polynomial. Then for any b ∈ V (p) we have that ∆σ,δ(b) ⊂
V (p).

Proof. By hypothesis, for every a ∈ K \ {0}, we have that p(t)a = φ(a)p(t).

Hence we have (p(t)a)(b) = p(t)(ba)a = (φ(a)p(t))(b) = φ(a)p(b) = 0, by

the product formula. This shows that for any a ∈ K \ {0}, we have that

p(t)(ba) = 0, as required.

Proposition 4.7. Suppose that σ = diag(σ1, . . . , σn) and that, for some

1 ≤ i ≤ n there is no polynomial q(ti) ∈ Si = K[ti, σi, δi] such that q(a) = 0
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for every a ∈ K. Then pi(ti) ∈ Si is semi-invariant if and only if, for every

a ∈ K,

pi(Ta) = rpi(Ta)(1) ◦ σ
ni
i

where ni = deg(pi(ti)) and rpi(Ta)(1) stands for the right multiplication by

pi(Ta)(1).

Proof. Using Proposition(4.4), we have, for any x ∈ K, pi(Ta)(x) = (pi(ti)x)(a) =

(σni
i (x)pi(ti))(a) = σni

i (x)(pi(Ta)(1)) = rpi(Ta)(1) ◦ σ
ni
i (x). This gives the for-

mula.

Conversely, if pi(Ta) = rpi(Ta)(1) ◦ σ
ni
i then, for every x ∈ K, pi(Ta)(x) =

σni
i (x)pi(Ta)(1). Thus for every x, a ∈ K, (pi(ti)x)(a) = (σni

i (x)pi(ti))(a).

Hence our hypothesis shows that, for any x ∈ K, pi(ti)x = σni
i (x)pi(ti),

showing that pi(ti) is semi-invariant.

5 Centralizers and roots

In this section we study the important role played by the centralizer,

Also, we will assume A is a (noncommutative) domain and S will stand for

S = A[t;σ, δ].

Definitions 5.1. Let a = (a1, . . . , an)
t ∈ An, the σ, δ centralizer of a, denoted

Cσ,δ(a) is the set

Cσ,δ(a) = {x ∈ A | σ(x)a+ δ(x) = ax} ⊂ A (8)

The idealizer, denoted idl(I) of a left ideal I of S = A[t, σ, δ] is defined by

idl(I) = {p ∈ S | Ip ⊂ I}.

One can easily check that Cσ,δ(a) and idl(I) are in fact subrings of A

and S respectively. Moreover I ⊆ idl(I). If we assume that n = 1, one

can readily check that Ta is a right linear map over the subring given by

Cσ,δ(a) := {x ∈ A | Ta(x) = ax}. In the case when A = K is a division ring,

Cσ,δ(a) is a division ring isomorphic to EndS(S/I), where I =
∑

i S(ti − ai).

Proposition 5.2. (1) b ∈ Cσ,δ(a) if and only if for any 1 ≤ i ≤ n we have∑n
j=1 σij(b)aj + δi(b)− aib = 0.

(2) If I =
∑
S(ti − ai), then S/I is a left S module and a right Cσ,δ(a).
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(3) There is a ring isomorphism between Cσ,δ(a) and EndS(S/I), where

S = A[t;σ, δ] and I =
∑n

i=1 S(ti − ai). If the base ring A is a division

ring these rings are in fact division rings.

(4) We have isomorphisms of rings

Cσ,δ(a) ∼= EndS(S/I) ∼= idl(I)/I.

Proof. (1) This is a direct consequence of the definition (cf. equation (8)).

(2) The fact that S/I is a right Cσ,δ(a)-module is clear since for any

1 ≤ i ≤ n and any b ∈ Cσ,δ(a), we have (ti−ai)b = tib−aib =
∑n

j=1 σij(b)tj+

δi(b)− aib =
∑n

j=1 σij(b)(tj − aj) +
∑n

j=1 σij(b)aj + δi(b)− aib. Hence, by (1)

we get (ti − ai)b =
∑n

j=1 σij(b)aj ∈ I.

(3) For b ∈ Cσ,δ(a), we define a map ψ(b) : S/I → S/I by ψ(b)(f(t)+I) =

f(t)b + I. This map is well defined since, for any 1 ≤ i ≤ n and any s ∈ S,

we have (in S/I) ψ(b)(s(ti−ai)) = s(ti−ai)b = s(
∑n

j=1 σij(b)(tj−aj), where
the last equality is obtained as in (2) above. The map ψ(b) is easily seen

to be left S-linear. The fact that ψ is an isomorphism of rings is easy to

check. In case A is a division ring, one can check that if b ∈ Cσ,δ(a) then

b−1 ∈ Cσ,δ(a).

(4) The first isomorphism is given in (3) and the second is easy and well-

known.

Remark 5.3. There is a more general point of view: Having a left S module.

We put C = EndS(V ). We then obtain a (S,C) bimodule structure on V .

If we fix a ∈ An, and consider V = S/I where I =
∑
S(ti − ai), we get a

(S,C(a)) bimodule structure on S/I. This shed some light on the fact that

Ta is a C(a) is a right module map.

Proposition 5.4. Let a ∈ An then for any 1 ≤ i ≤ n, we have

Tai ∈ End(AC), where C = Cσ,δ(a).

Proof. We have, for x ∈ A and y ∈ C, Tai(xy) =
∑

j(σij(xy)aj + δi(xy)) =∑
j(σij(x)σij(y)aj + σij(x)δj(y) + δi(x)y) =

∑
j(σij(x)(σij(y)aj + δj(y)) +

δi(x)y) =
∑

j(σij(x)aiy + δi(x)y) =
∑

j Tai(x)y.

For a domain A, f ∈ S = A[t;σ, δ], and a ∈ An, we define

V (f) = {a ∈ An | f(a) = 0} and
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The next proposition will put some structure on the set of roots of a poly-

nomial f ∈ S = A[t;σ, δ]. The set V (f) is naturally divided into conjugacy

classes. For any a ∈ V (f), we consider the set

Aa := {x ∈ A | ∃b ∈ An with bx = σ(x)a+ δ(x)}

Since A is a domain we notice that if x ∈ Aa there exists a unique b ∈ An

such that bx = σ(x)a+ δ(x). We will denote this unique b by ax. We put

E(f, a) := {x ∈ Aa | f(ax) = 0}

We recall that ∆(a) = {b ∈ An | a ∼ b} = {ax | x ∈ A}.

Proposition 5.5. Let A be a domain, a ∈ An, and f(t) ∈ S = A[t;σ, δ].

Then

1. If 0 ̸= x ∈ A is such that bx = σ(x)a + δ(x) then x ∈ ker f(Ta) if and

only if f(b) = 0

2. E(f, a) = ker f(Ta) ∩ Aa

3. ker f(Ta) and E(f, a) are right Cσ,δ(a) modules.

4. ∆(a) ∩ V (f) = {ax | x ∈ E(f, a)} = aE(f,a).

5. Let Γ = {a ∈ An | V (f) ∩∆(a) ̸= ∅}. Then V (f) =
⋃

a∈Γ(a
E(f,a)).

Proof. 1. The fact that x ∈ ker f(Ta) implies f(b) = 0 is given in Proposition

(4.5). Conversely if f(b) = f(ax) = 0, we have 0 = f(ax)x = fx(a) =

f(Ta)(x).

2. This is clear from 1; above.

3. From Proposition (5.4), it is clear that ker f(Ta) is C-linear. Now let

x ∈ Aa and b ∈ An be such that bx = σ(x)a + δ(x). Let also c ∈ Cσ,δ(a),

then σ(c)a + δ(c) = ac and we have bxc = σ(x)ac + δ(x)c = σ(x)(σ(c)a +

δ(c)) + δ(x)c = σ(xc)a + δ(xc). This shows that xc ∈ Aa and hence Aa is a

right Cσ,δ(a) module. This yields the proof.

4. and 5. are clear.
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